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J. Phys. A: Math. Gen. 24 (1991) 307-311. Printed in the UK 

Symmetry of the Parisi order-parameter space in spin glasses 

A V Goltsev 
loffe Physieo-Technical Institute, 194021 Leningrad, USSR 

Received 9 July 1990 

Abstracl. We find and study a group of transformations of the Parisi order parameter. The 
spin-glass free energy is invariant under these transformations. A classification of 
infinitesimal transformations is given. 

At the present time we have a good understanding of spin glasses at the mean-field 
level (see, for example, Binder and Young 1986, Mezard et a/ 1987). However, so far 
the problem of a phase transition in 3d spin glasses is open. Difficulties are related to 
an extremely complicated spectrum of order-parameter fluctuations in the low- 
temperature phase (De Dominicis and Kondor 1983, 1989; Goltsev 1984, 1986; 
Temesviri er al 1988). We think that a more profound understanding of the Parisi 
order-parameter space may be useful in this direction. 

In the present paper we determine a group of transformation of the Parisi order 
parameter that do  not change the spin-glass free energy. 

At first we introduce the notion of the Parisi order-parameter space. Let us recall 
the principal properties of the Parisi order parameter (Parisi 1979, 1980). 

The free energy of king spin glasses in the mean-field approximation has the 
following form (Sherrington and Kirkpatrick 1975, 1978): 

Here spins S ,= i l ,  the order-parameter matrix 9*, is symmetric =9,.) with 
9" = O  at all a. Replica indices a and p run from 1 to n. Firstly, the order parameter 
qm, has to satisfy the equation 

aFlaq,, = o (2) 

for each pair (@). Equation (2) is equivalent to the following equation: 9., =(S,S,) .  
Secondly, the free energy (1) should be stable with respect to small-order-parameter 
fluctuations (de Almeida and Thouless 1978). At temperatures T larger than a critical 
temperature T, there is the only stable solution qag = 9, i.e. the replica-symmetric 
solution (Edwards and Anderson 1975, Sherrington and Kirkpatrick 1975, 1978; de 
Almeida and Thouless 1978). At T < T, the Parisi solution with broken replica symmetry 
is stable (Parisi 1979, 1980). A block structure of the Parisi order parameter 9., is well 
known. Below we will call this matrix the canonical Parisi matrix (9&) .  The value of 
a matrix element 9., depends on an ultrametric distance d<,@ = a  n p  between replicas 
a and p. If de, # dyu then qmP = # qVu = 6, that is (S,S,)  # (S,S,). From a physical 
point of view, correlation functions (S,S,) and (S,S,) should be equivalent. To restore 
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the symmetry between these two pairs of replicas (ap)  and (yv) we can consider 
another matrix 9bB which differs from the canonical matrix 9iB in a certain permutation 
of matrix elements (of course, matrix 9bB should he a solution of equation (2)). In 
such a way for the considered replica pairs (ap )  and ( v u )  we can obtain 9& =(&so) = 4" 
and 91. = (S,S,) = $. Therefore, considering two matrices 9& and qmP, we can say that 
the symmetry between (ap)  and ( v u )  is restored. Then we can continue this procedure 
and restore the symmetry between all replica pairs (ap)  (De Dominicis and Young 
1983). Consequently we obtain a set of matrices 9bp which differ from 9& in all 
possible permutations of matrix elements. Below, this set of matrices is called the 
Parisi order-parameter space and is denoted by P {qmP}. The main aim of our paper is 
to study a symmetry of the space P{qwP}.  

Let us find a set of transformations U which transform a matrix qmP E P (qag}  into 
another matrix 9LS E P{qmB}:  

It is clear that the free energy (1) has to be invariant under this transformation, i.e. 

F ( U 9 ) = F ( 9 ) = F ( q C ) .  (4) 

U T U = l  (5) 

Substituting (3) into ( I )  we find that equation (4) takes place if 

1 U@~Y"S,S, = s:,sb. ( 6 )  

Equation ( 5 )  shows that UT= U - ' ,  i.e. the transformation matrix U is a unimodular 
orthogonal matrix. In equation (6) Sh = * I  are new spin variables. We can satisfy 
equations ( 5 )  and (6) if the transformation U has the form 

7" 

(7)  

s&=1  T m p s ~ .  (8) 

TeB Il,&,i,~ (9) 

U"B.7" = T m Y T P "  

where T is a transformation T :  (S , ,  S,, . . . , Sn)+ (Si, S:, . . . , SLj, that is 

B 

We find that the matrix Pp may be presented in a form 

here ?,=*1 for all a; is the Kroneker symbol. A set of integer numbers 
( ~ ( l ) ,  ~ ( 2 ) ,  . . . , T ( n ) )  differs from the set ( I ,  2, .  . . , n j  in a permutation of a few 
numbers. In other words, T is an operation of a permutation of the integer numbers 
( l , 2 , . ,  , , n), i.e. n:a+?r(a) .  Below, the matrix (9) will be denoted T ( T ) .  From (9) 
one obtains that T'T = 1 or T ~ =  T- ' .  Consequently T is a unimodular orthogonal matrix 
of the group SO(n).  Substituting (7) and (9) into (3), we find 

q 6 P  = % I l B % ( u l n i B l ~  (10) 

Let us consider a case of a positive order parameter ( 9.,p > 0). From a physical point 
of view this case takes place when a magnetic field is positive (H > 0). In this case we 
choose vm = 1 at all a. 

It is convenient to write the transformation (3) in matrix form 

9 '=  T ( T ) 9 T - ' ( n )  (11) 

which resulted from (7) and the properties of the matrix T ( T )  (T' = T - ' ) ,  
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It is interesting to note that the invariance of the spin-glass free energy ( I )  under 
the transformation ( 1  1) takes place at H # 0 because 

E Sb = 1 P ( v ) S P  =I so. (12) 
LI =B P 

The set of the transformation { r ( v ) }  forms a subgroup of the group SO(n).  This 
statement results from the relation r ( v , ) r ( v i )  = ~ ( ~ ~ 7 1 ~ ) .  

To classify matrices r we need now enter deeper into the Parisi hierarchical block 
procedure (Parisi 1979, 1980). At first we divide the sequence of numbers 1 , 2 , .  . . , n 
into blocks I(jJ where the block index j, = 1,2 , .  . . , n/m, .  Replica a belongs to block 
I ( j , )  if ( j l - l ) m l < a ~ j , m l .  Then each block I(j,) is divided into smaller blocks 
I ( j , ,  j,) where j ,  = I, 2 , .  . . , m,/m2 and m2 is the number of replicas in each of these 
newblocks(rep1icaol belongstoblock l ( j l , j 2 ) i f w e  h a v e ( j , - l ) m , + ( j , - l ) m , < a S  
( j ,  - l )m,  +j,m2. This procedure must be continued and each block I ( j , ,  j2) is divided 
into blocks I ( j l ,  j , ,  j3) where j, = 1 ,2 ,  . . . , m2/m3, and so on. The smallest blocks are 
denoted as I ( j , ,  j , ,  . . . , jR). Each replica a may be replaced by a sequence of hierar- 
chical block numbers (I = ( j , ,  j2,. . . , in .  a )  where a = 1 , 2 ,  . . . , mR labels replicas in a 
smallest block I ( j , ,  j2, . . . , jR). Now we can determine the matrix element 9e6. If 
(I = ( j , ,  . , . , j,, a )  and p = ( I , ,  . . . , I , ,  b )  where j, = I , ,  j,= 1 2 , .  . . , j, = I,  but j!,, # I , , ,  
( i . e . ( Ie l ( j ,  . . . j  ; j , + , ) a n d p ~  I ( j ,  . . . j  jl,+,))thenwehave9,p=q,.Usingthishierarchy 
of blocks we can introduce a hierarchy of the transformations r. 

At first weintroduce a set oftransformations e, which permute blocks l ( j , .  . . j,j,+,) 
inside of the block I ( j , .  ..j,), i.e. er : ( j ,  . . . j  ,{j,+,})-(j,. . . j ,{~(j ,+,)}) .  It i s  easy to 
show that elqce;' = 9'. However, in general e,qe;' # q. 

Now we introduce a notion of infinitesimal transformation U by saying that a 
transformation U is infinitesimal if 

I Iuqcu-I--q=IJz= / E  OP ( ( u q C u - l ) , p - q b P ) 2 1  << 1. (13) 

Let us consider a set of transformations u(T, )  = ul, I =  1,2, .  . . , R, where vI permute 
onlytwo blocks,forexample,l(j,, . . ., j l - , , j l ,  j,+,) and I ( j l , j 2 .  
j, # j : .  In other words 

TI: ... l ( j ,  . . . j ~ j ~ + ~ ) . . . I ( j ,  
We find that 

Iludu;' - qC1l2 = 81m - m I + h ( q l - ,  - 41)21n-0+ 0 (14) 
where at I =  R, mR+, = 1. In accordance with definition (13), the transformation U; is 
infinitesimal. Therefore we obtain a hierarchy of infinitesimal transformations 
{ u J ,  {u2) ,  . . . , {uR]. It should be noted that a first attempt at the study of infinitesimal 
transformations has been made by Kondor and Nemeth 1987. 

It is interesting to note that an arbitrary transformation r may be presented as a 
product of infinitesimal operators U, and e,. For example, we consider a structure of 
a transformation r ( v ( a o p o ) )  = r(uoPo) where 

rr(aopo) : 1 . . . a". . . P o . .  . n + 1 . . . P o .  . . a,) . . . n 
that is n(aopo) permutes two replicas (I" and p,, ( a l l e p u ) .  Let us have a"= 
( j l , ,  . . , i n ,  a )  and Po= ( I , ,  . . . , I , ,  b )  where 9=,,@,,= 9i. Choosing a certain set of trans- 
formations U, we can write the transformation T ( @ ~ J  in the form 

r(aopo)  = U;;,U:~'~ u,',u,u,_, . . . Ui12U,+ , .  (15) 



The last equation shows that in the Parisi order-parameter space the point 9'= 
~ ( a ~ j 3 ~ ) 9 ~ ~ - ' ( c i ~ p ~ )  is at a finite 'distance' from the point 9'. 

Now we consider a sequence of transformations 

-I 
T ,  =U;:, T 2 = U ; : , U ; : 2 = T I U i + 2  7 )  = 7 2  U ;:, 
7 R - j  = TR-i - , l lR  T R - j i ,  = T R - ; U R - ,  ... (17) 

T ~ ~ - ~ ~ - ~  = T ~ ~ - ~ ~ - ~ ~ ~ ~ + ,  = T(a,p,,j 

This sequence of transformations T. generates a sequence of matrices q, , qz ,  . , . , 
q2R-2i- ,  where q i =  T{qCT;'. Using equations (131, (15) and (16) we can find that, for 
j S R - i ,  

(18) 
l \ % - + l 1 2 =  11T;1T;_19cT;?lT;-q E 2  11 = IlU;+jqcU~~;-q'l12. 

Therefore according to (14) the distance between points I&, and e tends to zero in 
the continuum limit n -f 0. The same result is obtained at j > R - i. It means that the 
sequence of matrices 9 , ,  . . . , q2n-2i+, = 9' forms a continuous path from the point 9' 
to the point q' in the space P{q}. 

The free-energy functional of a short-range spin glass has the form (Bray and 
Moore i979j 

F(q(r))  = 1 dr[&pq2(rj - T In tqs) e x ~ ( % ~ s ( r ) q ( r ) s ( r ) )  

+pHS(r )  +(1/4z)p~p(vq(r)) ' ]  (19) 

where z is the number of nearest neighbours. Moreover 

where S = (SI, S 2 , .  . . , Sn). Free energy (19) is invariant under a global transformations 
q'(r) = r ( v ) q ( r ) r - ' ( v ) ,  Moreover, two first terms in (19) are invariant under local 
transformations q ( r )  = r (a(r))q(r)T- ' (v(r)) .  

Now there are interesting problems that still face us. The first problem is the problem 
of the topological structure of the space P { q } .  The second problem is the problem of 
topological defects that can destroy the long-ranged order in shon-range spin glasses. 
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