Symmetry of the Parisi order-parameter space in spin glasses

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24307
(http://iopscience.iop.org/0305-4470/24/1/036)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:22

Please note that terms and conditions apply.

Symmetry of the Parisi order-parameter space in spin glasses

A V Goltsev
Ioffe Physico-Technical Institute, 194021 Leningrad, USSR

Received 9 July 1990

Abstract

We find and study a group of transformations of the Parisi order parameter. The spin-glass free energy is invariant under these transformations. A classification of infinitesimal transformations is given.

At the present time we have a good understanding of spin glasses at the mean-field level (see, for example, Binder and Young 1986, Mezard et al 1987). However, so far the problem of a phase transition in 3d spin glasses is open. Difficulties are related to an extremely complicated spectrum of order-parameter fluctuations in the lowtemperature phase (De Dominicis and Kondor 1983, 1989; Goltsev 1984, 1986; Temesvári et al 1988). We think that a more profound understanding of the Parisi order-parameter space may be useful in this direction.

In the present paper we determine a group of transformation of the Parisi order parameter that do not change the spin-glass free energy.

At first we introduce the notion of the Parisi order-parameter space. Let us recall the principal properties of the Parisi order parameter (Parisi 1979, 1980).

The free energy of Ising spin glasses in the mean-field approximation has the following form (Sherrington and Kirkpatrick 1975, 1978):

$$
\begin{equation*}
F\left(q_{\alpha \beta}\right)=\frac{1}{4} \beta \sum_{\alpha \beta} q_{\alpha \beta}^{2}-T \ln \operatorname{tr}_{\left\{S_{\alpha}\right\}} \exp \left(\frac{1}{2} \beta^{2} \sum_{\alpha \beta} q_{\alpha \beta} S_{\alpha} S_{\beta}+\beta H \sum_{\alpha} S_{\alpha}\right) . \tag{1}
\end{equation*}
$$

Here spins $S_{\alpha}= \pm 1$, the order-parameter matrix $q_{\alpha \beta}$ is symmetric ($q_{\alpha \beta}=q_{\beta \alpha}$) with $q_{\alpha \alpha}=0$ at all α. Replica indices α and β run from 1 to n. Firstly, the order parameter $q_{\alpha \beta}$ has to satisfy the equation

$$
\begin{equation*}
\partial F / \partial q_{\alpha \beta}=0 \tag{2}
\end{equation*}
$$

for each pair ($\alpha \beta$). Equation (2) is equivalent to the following equation: $\boldsymbol{q}_{\alpha \beta}=\left\langle S_{\alpha} S_{\beta}\right\rangle$. Secondly, the free energy (1) should be stable with respect to small-order-parameter fluctuations (de Almeida and Thouless 1978). At temperatures T larger than a critical temperature T_{c} there is the only stable solution $q_{\alpha \beta}=q$, i.e. the replica-symmetric solution (Edwards and Anderson 1975, Sherrington and Kirkpatrick 1975, 1978; de Almeida and Thouless 1978). At $T<T_{c}$ the Parisi solution with broken replica symmetry is stable (Parisi 1979, 1980). A block structure of the Parisi order parameter $q_{\alpha \beta}$ is well known. Below we will call this matrix the canonical Parisi matrix ($q_{\alpha \beta}^{c}$). The value of a matrix element $q_{\alpha \beta}$ depends on an ultrametric distance $d_{\alpha \beta} \equiv \alpha \cap \beta$ between replicas α and β. If $d_{\alpha \beta} \neq d_{\gamma \nu}$ then $q_{\alpha \beta}=\tilde{q} \neq q_{\gamma \nu}=\tilde{\tilde{q}}$, that is $\left\langle S_{\alpha} S_{\beta}\right\rangle \neq\left\langle S_{\gamma} S_{\nu}\right\rangle$. From a physical point of view, correlation functions $\left\langle S_{\alpha} S_{\beta}\right\rangle$ and $\left\langle S_{\gamma} S_{\nu}\right\rangle$ should be equivalent. To restore
the symmetry between these two pairs of replicas $(\alpha \beta)$ and ($\gamma \nu$) we can consider another matrix $q_{\alpha \beta}^{\prime}$ which differs from the canonical matrix $q_{\alpha \beta}^{\mathrm{c}}$ in a certain permutation of matrix elements (of course, matrix $q_{\alpha \beta}^{\prime}$ should be a solution of equation (2)). In such a way for the considered replica pairs ($\alpha \beta$) and ($\gamma \nu$) we can obtain $q_{\alpha \beta}^{\prime}=\left\langle S_{\alpha} S_{\beta}\right\rangle=\tilde{\tilde{q}}$ and $q_{\gamma \nu}^{\prime}=\left\langle S_{\gamma} S_{\nu}\right\rangle=\tilde{q}$. Therefore, considering two matrices $q_{\alpha \beta}^{\mathrm{c}}$ and $q_{\alpha \beta}$, we can say that the symmetry between $(\alpha \beta)$ and $(\gamma \nu)$ is restored. Then we can continue this procedure and restore the symmetry between all replica pairs ($\alpha \beta$) (De Dominicis and Young 1983). Consequently we obtain a set of matrices $q_{\alpha \beta}^{\prime}$ which differ from $q_{\alpha \beta}^{c}$ in all possible permutations of matrix elements. Below, this set of matrices is called the Parisi order-parameter space and is denoted by $P\left\{q_{\alpha \beta}\right\}$. The main aim of our paper is to study a symmetry of the space $P\left\{q_{\alpha \beta}\right\}$.

Let us find a set of transformations U which transform a matrix $q_{\alpha \beta} \in P\left\{q_{\alpha \beta}\right\}$ into another matrix $q_{\alpha \beta}^{\prime} \in P\left\{q_{\alpha \beta}\right\}$:

$$
\begin{equation*}
q_{\alpha \beta}^{\prime}=\sum_{\gamma \nu} U^{\alpha \beta, \gamma \nu} q_{\gamma \nu} . \tag{3}
\end{equation*}
$$

It is clear that the free energy (1) has to be invariant under this transformation, i.e.

$$
\begin{equation*}
F(U q)=F(q)=F\left(q^{\mathrm{c}}\right) \tag{4}
\end{equation*}
$$

Substituting (3) into (1) we find that equation (4) takes place if

$$
\begin{align*}
& U^{\mathrm{T}} U=1 \tag{5}\\
& \sum_{\gamma_{\nu}} U^{\alpha \beta, \gamma^{\nu}} S_{\gamma} S_{\nu}=S_{\alpha}^{\prime} S_{\beta}^{\prime} \tag{6}
\end{align*}
$$

Equation (5) shows that $U^{\mathrm{T}}=U^{-1}$, i.e. the transformation matrix U is a unimodular orthogonal matrix. In equation (6) $S_{\alpha}^{\prime}= \pm 1$ are new spin variables. We can satisfy equations (5) and (6) if the transformation U has the form

$$
\begin{equation*}
U^{\alpha \beta, \gamma \nu}=\tau^{\alpha \gamma} \tau^{\beta \nu} \tag{7}
\end{equation*}
$$

where τ is a transformation $\tau:\left(S_{1}, S_{2}, \ldots, S_{n}\right) \rightarrow\left(S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{n}^{\prime}\right)$, that is

$$
\begin{equation*}
S_{\alpha}^{\prime}=\sum_{\beta} \tau^{\alpha \beta} S_{\beta} \tag{8}
\end{equation*}
$$

We find that the matrix $\tau^{\alpha \beta}$ may be presented in a form

$$
\begin{equation*}
\tau^{\alpha \beta}=\eta_{\alpha} \delta_{\pi(\alpha), \beta} \tag{9}
\end{equation*}
$$

here $\eta_{\alpha}= \pm 1$ for all α; $\delta_{\alpha, \beta}$ is the Kroneker symbol. A set of integer numbers ($\pi(1), \pi(2), \ldots, \pi(n))$ differs from the set $(1,2, \ldots, n)$ in a permutation of a few numbers. In other words, π is an operation of a permutation of the integer numbers $(1,2, \ldots, n)$, i.e. $\pi: \alpha \rightarrow \pi(\alpha)$. Below, the matrix (9) will be denoted $\tau(\pi)$. From (9) one obtains that $\tau^{\top} \tau=1$ or $\tau^{\top}=\tau^{-1}$. Consequently τ is a unimodular orthogonal matrix of the group $\mathrm{SO}(n)$. Substituting (7) and (9) into (3), we find

$$
\begin{equation*}
q_{\alpha \beta}^{\prime}=\eta_{\alpha} \eta_{\beta} q_{\pi(\alpha) \pi(\beta)} \tag{10}
\end{equation*}
$$

Let us consider a case of a positive order parameter ($q_{\alpha \beta}>0$). From a physical point of view this case takes place when a magnetic field is positive ($H>0$). In this case we choose $\eta_{\alpha}=1$ at all α.

It is convenient to write the transformation (3) in matrix form

$$
\begin{equation*}
q^{\prime}=\tau(\pi) q \tau^{-1}(\pi) \tag{11}
\end{equation*}
$$

which resulted from (7) and the properties of the matrix $\tau(\pi)\left(\tau^{T}=\tau^{-1}\right)$.

It is interesting to note that the invariance of the spin-glass free energy (1) under the transformation (11) takes place at $H \neq 0$ because

$$
\begin{equation*}
\sum_{\alpha} S_{\alpha}^{\prime}=\sum_{\alpha \beta} \tau^{\alpha \beta}(\pi) S_{\beta}=\sum_{\beta} S_{\beta} . \tag{12}
\end{equation*}
$$

The set of the transformation $\{\tau(\pi)\}$ forms a subgroup of the group $\mathrm{SO}(n)$. This statement results from the relation $\tau\left(\pi_{1}\right) \tau\left(\pi_{2}\right)=\tau\left(\pi_{1} \pi_{2}\right)$.

To classify matrices τ we need now enter deeper into the Parisi hierarchical block procedure (Parisi 1979, 1980). At first we divide the sequence of numbers $1,2, \ldots, n$ into blocks $I\left(j_{1}\right)$ where the block index $j_{1}=1,2, \ldots, n / m_{1}$. Replica α belongs to block $I\left(j_{1}\right)$ if $\left(j_{1}-1\right) m_{1}<\alpha \leqslant j_{1} m_{1}$. Then each block $I\left(j_{1}\right)$ is divided into smaller blocks $I\left(j_{1}, j_{2}\right)$ where $j_{2}=1,2, \ldots, m_{1} / m_{2}$ and m_{2} is the number of replicas in each of these new blocks (replica α belongs to block $I\left(j_{1}, j_{2}\right)$ if we have $\left(j_{1}-1\right) m_{1}+\left(j_{2}-1\right) m_{2}<\alpha \leqslant$ ($\left.j_{1}-1\right) m_{1}+j_{2} m_{2}$. This procedure must be continued and each block $I\left(j_{1}, j_{2}\right)$ is divided into blocks $I\left(j_{1}, j_{2}, j_{3}\right)$ where $j_{3}=1,2, \ldots, m_{2} / m_{3}$, and so on. The smallest blocks are denoted as $I\left(j_{1}, j_{2}, \ldots, j_{R}\right)$. Each replica α may be replaced by a sequence of hierarchical block numbers $\alpha=\left(j_{1}, j_{2}, \ldots, j_{R}, a\right)$ where $a=1,2, \ldots, m_{R}$ labels replicas in a smallest block $I\left(j_{1}, j_{2}, \ldots, j_{R}\right)$. Now we can determine the matrix element $q_{\alpha \beta}$. If $\alpha=\left(j_{1}, \ldots, j_{R}, a\right)$ and $\beta=\left(l_{1}, \ldots, l_{R}, b\right)$ where $j_{1}=l_{1}, j_{2}=l_{2}, \ldots, j_{i}=l_{i}$ but $j_{i+1} \neq l_{i+1}$ (i.e. $\alpha \in I\left(j_{1} \ldots j_{i} j_{i+1}\right)$ and $\left.\beta \in I\left(j_{1} \ldots j_{i} l_{i+1}\right)\right)$ then we have $q_{\alpha \beta}=q_{i}$. Using this hierarchy of blocks we can introduce a hierarchy of the transformations τ.

At first we introduce a set of transformations e_{l} which permute blocks $I\left(j_{1} \ldots j_{l} j_{l+1}\right)$ inside of the block $I\left(j_{1} \ldots j_{l}\right)$, i.e. $e_{1}:\left(j_{1} \ldots j_{\{ }\left\{j_{l+1}\right\}\right) \rightarrow\left(j_{1} \ldots j_{l}\left\{\pi\left(j_{l+1}\right)\right\}\right)$. It is easy to show that $e_{l} q^{c} e_{l}^{-1}=q^{c}$. However, in general $e_{l} q e_{l}^{-1} \neq q$.

Now we introduce a notion of infinitesimal transformation u by saying that a transformation u is infinitesimal if

$$
\begin{equation*}
\left\|u q^{\mathrm{c}} u^{-1}-q^{\mathrm{c}}\right\|^{2} \equiv\left|\sum_{\alpha \beta}\left(\left(u q^{\mathrm{c}} u^{-1}\right)_{\alpha \beta}-q_{\alpha \beta}^{\mathrm{c}}\right)^{2}\right| \ll 1 . \tag{13}
\end{equation*}
$$

Let us consider a set of transformations $u\left(\pi_{l}\right)=u_{i}, l=1,2, \ldots, R$, where π_{l} permute only two blocks, for example, $I\left(j_{1}, \ldots, j_{l-1}, j_{l}, j_{l+1}\right)$ and $I\left(j_{1}, j_{2}, \ldots, j_{1-1}, j_{l}^{\prime}, j_{1+1}^{\prime}\right)$ where $j_{I} \neq j_{l}^{\prime}$. In other words
$\pi_{l} \ldots \ldots I\left(j_{1} \ldots j_{l} j_{l+1}\right) \ldots I\left(j_{1} \ldots j_{l}^{\prime} j_{l+1}^{\prime}\right) \rightarrow \ldots I\left(j_{1} \ldots j_{l}^{\prime} j_{l+1}^{\prime}\right) \ldots I\left(j_{1} \ldots j_{l} j_{l+1}\right)$.
We find that

$$
\begin{equation*}
\left\|u_{l} q^{\mathrm{c}} u_{l}^{-1}-q^{\mathrm{c}}\right\|^{2}=\left.8\left|m_{l}-m_{l+1}\right| m_{l}\left(q_{l-1}-q_{l}\right)^{2}\right|_{n \rightarrow 0} \rightarrow 0 \tag{14}
\end{equation*}
$$

where at $l=R, m_{R+1}=1$. In accordance with definition (13), the transformation u_{i} is infinitesimal. Therefore we obtain a hierarchy of infinitesimal transformations $\left\{u_{1}\right\},\left\{u_{2}\right\}, \ldots,\left\{u_{R}\right\}$. It should be noted that a first attempt at the study of infinitesimal transformations has been made by Kondor and Nemeth 1987.

It is interesting to note that an arbitrary transformation τ may be presented as a product of infinitesimal operators u_{I} and e_{l}. For example, we consider a structure of a transformation $\tau\left(\pi\left(\alpha_{0} \beta_{0}\right)\right) \equiv \tau\left(\alpha_{0} \beta_{0}\right)$ where

$$
\pi\left(\alpha_{0} \beta_{0}\right): 1 \ldots \alpha_{0} \ldots \beta_{0} \ldots n \rightarrow 1 \ldots \beta_{0} \ldots \alpha_{0} \ldots n
$$

that is $\pi\left(\alpha_{0} \beta_{0}\right)$ permutes two replicas α_{0} and $\beta_{0}\left(\alpha_{0} \rightleftarrows \beta_{0}\right)$. Let us have $\alpha_{0}=$ $\left(j_{1}, \ldots, j_{R}, a\right)$ and $\beta_{0}=\left(l_{1}, \ldots, l_{R}, b\right)$ where $q_{\alpha_{v_{i}} \beta_{1}}=q_{i}$. Choosing a certain set of transformations u_{l} we can write the transformation $\tau\left(\alpha_{0} \beta_{0}\right)$ in the form

$$
\begin{equation*}
\tau\left(\alpha_{0} \beta_{0}\right)=u_{i+1}^{-1} u_{i+2}^{-1} \ldots u_{R-1}^{-1} u_{R} u_{R-1} \ldots u_{i+2} u_{i+1} . \tag{15}
\end{equation*}
$$

In the limit $n \rightarrow 0$ we have

$$
\begin{align*}
& \left\|\tau\left(\alpha_{0} \beta_{0}\right) q^{\mathrm{c}} \tau^{-1}\left(\alpha_{0} \beta_{0}\right)-q^{\mathrm{c}}\right\|^{2} \\
& \quad=8\left|2 q(x) \int_{x}^{1} \mathrm{~d} y q(y)-(1-x) q^{2}(x)-\int_{0}^{1} \mathrm{~d} y q^{2}(y)\right| \neq 0 . \tag{16}
\end{align*}
$$

The last equation shows that in the Parisi order-parameter space the point $q^{\prime}=$ $\tau\left(\alpha_{0} \beta_{0}\right) q^{c} \tau^{-1}\left(\alpha_{0} \beta_{0}\right)$ is at a finite 'distance' from the point q^{c}.

Now we consider a sequence of transformations

$$
\begin{align*}
& \tau_{1}=u_{i+1}^{-1} \quad \tau_{2}=u_{i+1}^{-1} u_{i+2}^{-1}=\tau_{1} u_{i+2}^{-1} \\
& \tau_{R-i}=\tau_{R-i-1} u_{R} \quad \tau_{R-i+1}=\tau_{R-i} u_{R-1}=\tau_{2} u_{i+3}^{-\frac{1}{2}} \quad \ldots \tag{17}\\
& \tau_{2 R-2 i-1}=\tau_{2 R-2 i-2^{u} i+1}=\tau\left(\alpha_{0} \beta_{0}\right) .
\end{align*}
$$

This sequence of transformations τ_{i} generates a sequence of matrices q_{1}, q_{2}, \ldots, $q_{2 R-2 i-1}$ where $q_{i} \equiv \tau_{i} q^{\mathrm{c}} \tau_{i}^{-1}$. Using equations (13), (15) and (16) we can find that, for $j \leqslant R-i$,

$$
\begin{equation*}
\left\|q_{j}-q_{j-1}\right\|^{2}=\left\|\tau_{j}^{-1} \tau_{j-1} q^{\mathrm{c}} \tau_{j-1}^{-1} \tau_{j}-q^{\mathrm{c}}\right\|^{2}=\left\|\mathrm{u}_{i+j} q^{\mathrm{c}} u_{i+j}^{-1}-q^{\mathrm{c}}\right\|^{2} . \tag{18}
\end{equation*}
$$

Therefore according to (14) the distance between points q_{j-1} and q_{j} tends to zero in the continuum limit $n \rightarrow 0$. The same result is obtained at $j>R-i$. It means that the sequence of matrices $q_{1}, \ldots, q_{2 R-2 i+1}=q^{\prime}$ forms a continuous path from the point $q^{\text {c }}$ to the point q^{\prime} in the space $P\{q\}$.

The free-energy functional of a short-range spin glass has the form (Bray and Moore 1979)

$$
\begin{gather*}
F(q(\boldsymbol{r}))=\int \mathrm{d} \boldsymbol{r}\left[\frac{1}{4} \beta S p q^{2}(\boldsymbol{r})-T \ln \operatorname{tr}_{\{\mathcal{S}\}} \exp \left(\frac{1}{2} \beta^{2} S(\boldsymbol{r}) q(\boldsymbol{r}) S(\boldsymbol{r})\right)\right. \\
\left.+\beta \boldsymbol{H S}(\boldsymbol{r})+(1 / 4 z) \beta S p(\nabla q(\boldsymbol{r}))^{2}\right] \tag{19}
\end{gather*}
$$

where z is the number of nearest neighbours. Moreover

$$
\begin{equation*}
\operatorname{Sp} q^{2}=\sum_{\alpha \beta} q_{\alpha \beta}^{2} \quad S q S=\sum_{\alpha \beta} S_{\mathrm{u}} q_{\alpha \beta} S_{\beta} \tag{20}
\end{equation*}
$$

where $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$. Free energy (19) is invariant under a global transformations $q^{\prime}(\boldsymbol{r})=\tau(\pi) q(\boldsymbol{r}) \tau^{-1}(\pi)$. Moreover, two first terms in (19) are invariant under local transformations $q(\boldsymbol{r})=\tau(\pi(\boldsymbol{r})) q(\boldsymbol{r}) \tau^{-i}(\pi(\boldsymbol{r}))$.

Now there are interesting problems that still face us. The first problem is the problem of the topological structure of the space $P\{q\}$. The second problem is the problem of topological defects that can destroy the long-ranged order in short-range spin glasses.

Acknowledgments

I would like to thank I Kondor, A S Lukyanenko and C De Dominicis for useful discussions and for taking interest in this work. A part of this work was done during my visit to the Institute for Theoretical Physics (Budapest).

References

Binder K and Young A P 1986 Rev. Mod. Phys. 58801
Bray A J and Moore M A 1979 J. Phys. C: Solid State Phys. 1279
de Almeida J R L and Thouless D J 1978 J. Phys. A: Math. Gen. 11983
De Dominicis C and Kondor I 1983 Phys. Rev. B 27606

- 1989 Saclay Preprint SPh T/89-92

De Dominicis C and Young A P 1983 J. Phys. A: Math. Gen. 162063
Edwards and Anderson 1975 J. Phys. F: Met. Phys. 5965
Goltsev A V 1984 J. Phys. C: Solid State Phys. 17 L241
_- 1986 J. Phys. C: Solid State Phys. 19 L215
Kondor I and Nemeth R 1987 Acta Phys. Hung. 62219
Mezard M, Parisi G and Virasoro M A 1987 Spin-Glass Theory and Beyond (Singapore: World Scientific)
Parisi G 1979 Phys. Rev. Lett. 431754

- 1980 J. Phys. A: Math. Gen. 131887

Sherrington D and Kirkpatrick S 1975 Phys. Rev. Lett. 351972

- 1978 Phys. Rev. B 174385

Temesvári T, Kondor I and De Dominicis C 1988 J. Phys. A: Math. Gen. 21 L1145

